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We present the first experiments that use the phase response method to determine components of the adjoint
eigenvector (of the Jacobian matrix of the linearized system) of an oscillating reaction system. The Briggs-
Rauscher reaction was studied near a supercritical Hopf bifurcation. Phase response curves for I- and Mn2+

have been determined, and from them corresponding components of the adjoint eigenvector have been deduced.
The relative magnitudes and difference in arguments of these components agree reasonably well with those
from a reduced model of the Briggs-Rauscher reaction, whereas agreement with results from quenching
experiments is mixed.

I. Introduction

Several approaches have been suggested and analyzed for
the determination from experiments, rather than the hypothesiz-
ing, of reaction pathways and mechanisms in complex kinetic
systems.1-10 Of great interest in this regard are oscillatory
reactions, which may be classified according to the type of
feedback mechanism.1 In ref 5 we listed 13 different experiments
from which information may be deduced about the reaction
mechanism. Three of these measurements are phase response
to a discrete perturbation, external periodic perturbations, and
quenching. In the first, a perturbation in the concentration of a
chemical species is introduced into the oscillatory reaction
system and the phase response of a (test) species is measured.
In experiments in which the concentration of one of the species
in the system is varied periodically by external means, the
response of the phase of a test species is measured, say for
example in the fundamental entrainment band. In quenching
experiments11,12changes in concentrations of a species, increases
or decreases, are made by trial until at an empirically determined
phase of the oscillations there results a temporary quenching
of the oscillations. As in the previous two measurements, a test
species is monitored to detect when a quenching has occurred.
For systems near a supercritical Hopf bifurcation, from station-
ary to oscillatory temporal variations of concentrations, Hynne
et al.12 have derived the relation of the adjoint eigenvector
(corresponding to a pure imaginary eigenvalue) to quenching
experiments. (Adjoint eigenvectors are left eigenvectors of the
Jacobian matrix for the system linearized about the stationary
state.) The adjoint eigenvectors provide restrictions on the
components of the Jacobian matrix, and thus indirectly on the
reaction mechanism, and may also be compared directly with
predictions from proposed model systems.

Vance and Ross13 have shown theoretically that essentially
the same information about adjoint eigenvectors as obtained
from quenching experiments can also be derived from phase
response and periodic perturbation experiments, which require
far fewer empirical determinations of appropriate conditions.
In particular for the perturbation of a given species, the
amplitude and zero crossing (with positive slope) of a phase
response function equal the magnitude and argument, respec-
tively, of the corresponding component of the adjoint eigen-

vector. Of great interest for the classification of oscillators is
the connection between phase response to the category of
oscillator; some details of this relation have been developed in
ref 4.

In this study, we selected the Briggs-Rauscher reaction14

for investigating phase response. It was chosen for several
desirable aspects: it is one of the oldest oscillating reactions,
many features of its mechanism have been established, and an
extensive series of quenching experiments have been carried
out on it. The reaction involves the iodate oxidation of malonic
acid in an acidic media of hydrogen peroxide and is catalyzed
by Mn2+. We measure phase responses near a Hopf bifurcation;
concentration perturbations are made with I- and separately with
Mn2+. The measurements are somewhat complicated by the slow
relaxation of the perturbed oscillatory reaction system near a
Hopf bifurcation.

The experimental setup is discussed in section II; the
measurements and their results are reported in section III;
comparisons of the experiments are made in section IV. In the
comparison with calculations we use a tractable model of the
Briggs-Rauscher reaction and calculate phase response curves.
Agreement with the experiments is good. The other comparison
is made with deductions from quenching measurements and
there the agreement is mixed.

II. Experimental Section

A. Equipment. We investigated the original version of the
Briggs-Rauscher oscillating reaction in which malonic acid is
oxidized by iodate and hydrogen peroxide in acidic media with
manganous ions acting as a catalyst. Three feed solutions were
used, hydrogen peroxide, potassium iodate, and a combination
of manganous sulfate and hydrogen peroxide, respectively. Each
feed solution was acidified using perchloric acid; the concentra-
tion of H+ ion in feeds was the same as the desired concentration
in the reactor, 0.0131 M.

The reaction was carried out in a Pyrex glass CSTR of volume
49.5 mL, which was surrounded by a cooling jacket maintained
at a constant temperature (21°C). Reactants were kept in the
water bath used for the jacket and fed into the reaction chamber
through 50µL pipets using peristaltic pumps (Ismatec IPS-4).
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Due to the much higher concentration of hydrogen peroxide
than the other reactants in the feed stream, we were concerned
about possible mixing effects if only one feed were used. We
therefore split the feed of H2O2 into two inputs positioned at
opposite sides of the reactor. The system was perturbed by
injecting small aliquots of known concentration into the reactor,
using a 200 µL gastight Hamilton syringe. A triggering
mechanism recorded the exact time a perturbant was injected.

The reaction was monitored with a double junction iodide-
selective electrode (Cole-Parmer H-27502-23). The logarithmic
response of the electrode makes quantitative measurements of
small concentration changes difficult; we used the output directly
as a qualitative measure (this is sufficient for phase response
studies). The response time of the electrode is much less than
the period of oscillations. Experiments were run by a 486/33
IBM-compatible computer running Windows 3.1. Custom
programs interfaced with a Data Translations DT-2805 A/D-
D/A board.

B. Operating Conditions. We used the same input concen-
trations as employed by Vukojevic et al.15 in their quenching
studies. The mixed flow concentrations were: [H+] ) 0.0131
M, [Mn2+] ) 2.22× 10-3 M, [IO3

-] ) 6.24× 10-2 M, [H2O2]
) 0.158 M, and [MA] ) 2.80 × 10-2 M. All reagents were
commercial analytical grade. Due to the decrease in molarity
of the hydrogen peroxide solution with time, we calibrated a
stock solution of hydrogen peroxide against a standardized
permanganate solution before each experimental run.

III. Measurements and Results

A. Location of a Hopf Bifurcation. With the inflow species
and their concentrations listed in section II we located a Hopf
bifurcation in the Briggs-Rauscher reaction at an inflow rate
of 11.4 mL/min, which corresponds to a specific flow rate of
0.0038 s-1. Above a minimum level of stirring of about 300
rpm the location of the bifurcation point is independent of the
rate of stirring. In ref 11 the bifurcation was reported to be at
0.00423 s-1, which is within about 10% of our result. A
contributing cause to this difference is the long relaxation time
near the Hopf bifurcation.

B. Period of the Oscillations.The period of the oscillations
at a specific flow rate of 0.00391 s-1, which is close to the
Hopf bifurcation value, is determined, by repeated measurements
of the time interval between one and the next peak in the
concentration of iodide ion, to beT ) 26.6 ( 0.48 s. (This
agrees very well with the experimental result in ref 15 of 27.3
s.) The sampling rate of iodide ion concentration is 0.4 s and
thus the uncertainty in the period is about one “bin”. The
oscillations are nearly sinusoidal as is shown in Figure 1.

C. Transients and Long Relaxations. Near the Hopf
bifurcation the system requires a very long time, that is hours,
to relax from a perturbation. This is illustrated in Figure 2 and
discussed in the caption.

D. Phase Resetting with Perturbations of Iodide Ion.A
phase shift is most conveniently defined in terms of an event
surface. We use the minimum of the response of the iodide-
selective electrode to define an event; the phase on the event
surface is taken to be zero. A phase resetting experiment consists
of perturbing the oscillator at a selected phase, letting the system
relax, and monitoring the shift (in time) of marker events. If
we denote the elapsed times from the marker event that
immediately preceded the perturbation to subsequent marker
events bytk, k ) 1,2,..., then aftern minima of the response of
the electrode have occurred, the phase shift is approximated by
n - tn/T.

The perturbations made with iodide ions consisted of injecting
200 µL of a 6.92× 10-4 M solution of KI in the reactor; the
resulting perturbation strength in iodide ion concentration was
2.80× 10-6 M, which induced a small but measurable shift in
the phase of the oscillations. Figure 3 shows such a perturbation
applied at a phase of the unperturbed system ofθ ) 0.84 )
302°, marked by a cross. The diamond prior in time to the cross
serves as a reference point; the diamonds after the cross serve
for measurement of the phase shift. We used the third minimum
after the perturbation to measure a phase shift of 0.9s.

The phase response function, using the third minimum after
the perturbation, is shown in Figure 4: the circles are the
measured phase shifts∆Θ at various phases of the unperturbed
system,θ. We expect13 the induced phase shift to depend
linearly on the cosine of (constant+2πθ).The solid line is a fit
of this form to the measurements

Figure 1. Autonomous oscillations of the Briggs-Rauscher reaction
under the experimental conditions described in section II. The
experimental points are marked by the symbol×; for comparison, a
sinusoid of period 26.6 s is plotted as the solid line.

Figure 2. An example of long transients encountered in the system.
The flow rate was increased by 1% to a final value of 0.00391 s-1.
The first curve, marked by circles, was collected 1.5 h after making
the increase; the second curve, marked by the symbol×, was collected
4 h after making the increase. During the intervening 2.5 h, the period
of oscillations remained constant, while the amplitude increased by
30%.
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with a standard deviation of 0.0080.

If we use the fourth, instead of the third, minimum for the
measurement of the induced phase shift then we obtain quite
similar results, with the fit of an equation of the form somewhat
worse, that is a standard deviation of 0.0105.

E. Phase Resetting with Perturbations of Manganous Ion.
The perturbation consisted of the addition of 200µL of 0.0133
M solution of MnSO4 to the reactor; the resulting perturbation
strength in manganous ion concentration was 5.38× 10-5 M.
This perturbation was sufficient to produce a small but measur-
able phase shift in the oscillations. Figure 5 gives the phase
shifts (circles), using the third minimum after the perturbation,
for various values of the phase of oscillation of the unperturbed
system. The solid line is the fit of an equation analogous to eq
1:

IV. Comparison of Experimental Results with Predictions
from a Model and Quenching Experiments

In this section we compare our experimental results with a
model of the Briggs-Rauscher reaction and also with quenching
experiments of Vukojevic et al.15 In addition, we report results
for the adjoint eigenvector based on numerical simulations of
phase resetting and compare them with exact results based on
the Jacobian matrix.

A. Turanyi-Furrow Model of the Briggs-Rauscher Reac-
tion. We used the model of the Briggs-Rauscher system
described Turanyi and Furrow.16,17(The adopted values for the
rate constants are close to those used in ref 15 for the TF model.)
The TF model is a simplified version of several more compli-
cated models: several reactions were eliminated using sensitivity
analysis (e.g. the reaction of Mn2+ with H2O2). In this
mechanism, the species Mn(OH)2+, iodomalonic acid, and
oxygen are considered inert reaction products. We held three
species fixed at their input concentrations: [IO3

-] ) 6.24 ×
10-2 M, [H2O2] ) 0.158 M, and [MA]) 2.80× 10-2 M.

We adjusted the values of the rate constants of this model to
reproduce the observed the Hopf bifurcation value and period
of oscillation as closely as possible, see Table 1. [We used values
given by Vukojevic et al. in ref 15 as initial values; most of the
best-fit values are within a factor of 2 of the initial values.]
The rate of a reaction is described through mass action kinetics
in which all species shown are included. The unit of concentra-
tion is M ) mol dm-3, and the unit of time is seconds. For
clarity, units for the rate coefficients are omitted in Table 1.

The Hopf bifurcation point occurs for a specific flow rate of
0.00421 s-1; this value is within 10% of the observed experi-
mental value of 0.0038 s-1. The period of oscillations 18.3 s,
which is roughly two-thirds of the experimentally observed 26.6
s.

B. Interpretation of Phase Response Experiments.For
systems near a Hopf bifurcation, both phase response and
quenching experiments yield components of the adjoint eigen-
vector ú* corresponding to the pure imaginary eigenvalue iω
of the Jacobian matrix. [More specifically, the adjoint eigen-
vector is the left eigenvector of the deterministic system
linearized about the stationary state at the Hopf bifurcation
point.] The phase response procedure involves perturbing the

Figure 3. Time series for a perturbation in I- at phaseθ ) 0.84. The
symbol × marks the location of the perturbation and the diamonds
identify marker events. The event prior to the perturbation acts as the
phase reference point; subsequent events are used to calculate the phase
shift.

Figure 4. Plot of the experimentally determined and the fitted (eq 1)
phase response function for species I-. Phase shifts were calculated
using the third minimum after the I- perturbation. Open circles denote
measured phase shifts, and the symbol× denotes values of the fitted
equation at experimental perturbation phases.

∆Θ ) -0.0508+ 0.112 cos(2.90+ 2πθ) (1)

Figure 5. Plot of the experimentally determined and the fitted (eq 2)
phase response function for species Mn2+. As for I-, phase shifts were
calculated using the third minimum after the Mn2+ perturbation. Open
circles denote measured phase shifts.

∆Θ ) -0.0554+ 0.0548 cos(5.94+ 2πθ). (2)
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kth species of an oscillating system with a given amplitude
perturbationεk and determining the asymptotic phase shift. (The
perturbation may last one oscillation period; see ref 13 for
details). This is carried out for sufficiently many points along
the limit cycle to determine a curve. In contrast, the quenching
procedure involves searching for the optimal phaseφk and
perturbation strengthqk for the kth species so as to temporarily
stop or quench oscillations.18

For phase response experiments, a plot of phase shifts against
the phases of the oscillator at which the perturbation commenced
yields the phase response curve (PRC). The PRC is sinusoidal
for systems close to Hopf bifurcations and can be fit toak + bk

cos(θk + 2πθ). The amplitudebk of the sinusoid is proportional
to the perturbation strengthεk. In experiments this proportional-
ity is used by adjusting the strength to give an observable phase
shift for a given perturbation species. In contrast to the PRC of
phase resetting experiments, quenching experiments yield a
single point, (qk, φk).

There is a direct relation between the PRC for a particular
perturbation species and the corresponding component of the
adjoint eigenvector written in polar formúk ) rk exp(iψk): the
magnituderk and the argumentψk are equal to the amplitude
bk and the phase offsetθk, respectively. This assumes that the
experimentally determined amplitude of PRC has been divided
by the strength of perturbationεk. Similarly for quenching data,
the amplitude and argument of the adjoint eigenvector are equal
to 1/qk and-φk, respectively.

To demonstrate the applicability of the phase response method
to complex systems, we simulated phase shift measurements
for the above TF model. We took the reduced flow rate to be
1% beyond the bifurcation point; this choice yielded nearly
sinusoidal oscillations. As in our experiments, the maximum
in [I-] was chosen as the marker and the third maximum
following the perturbation was used to calculate the phase shift.
The phase response curve for I- is shown in Figure 6. Similar
curves were obtained for each of the other six species;
components of the adjoint eigenvector were obtained from the
best sinusoidal fit to the simulation points. A comparison of
these values with those of the exact adjoint eigenvector of the
Jacobian (evaluated at the Hopf bifurcation point) is given in
Table 2. Extremely good agreement is found between each of
the elements.

This close agreement may be surprising in light of the original
derivation of the phase response curve for systems near Hopf
bifurcations, which is based on asymptotic phase shifts.13 Under
the conditions chosen, the TF model exhibits extremely slow
relaxation in the plane of oscillation: the eigenvalue associated
with the slow mode (in the plane of oscillation) is 0.0019, which
implies that over 35 oscillations are needed for a perturbed orbit
to return to the limit cycle and establish an asymptotic phase
shift.

The explanation for this behavior may be described briefly.
In an n-dimensional system close to a Hopf bifurcation,

relaxation to the limit cycle initially occurs along a fast direction,
an n-2-dimensional strong stable manifold, which projects a
perturbation onto the plane of oscillation. Subsequent slow
motion occurs in the plane of oscillation; all points that evolve
to the same point on the limit cycle determine an one-
dimensional weakly stable manifold. These stable manifolds,
weak and strong, determine how perturbations affect the phase
of a point on the limit cycle. A small perturbation either
advances or retards the phase according to whether the new
state is on the stable manifold of a point in advance of or behind
the initial one. As derived in Vance and Ross,13 the (asymptotic)
phase shift along the limit cycle induced by a small perturbation
may be expressed in terms of the adjoint eigenvectorsú* and
úh*. If we neglect slow relaxation and use an event determined
by a test species to define the phase, we can also approximate
the resulting experimentally measured phase response curve in
terms ofú* andúh*. Adding slow relaxation to the system makes
the (complex) constant terms that multiply the eigenvectors
become time dependent (on a time scalet1 ) µt, whereµ is a
measure of the distance to the Hopf bifurcation). Hence, once
a system has relaxed onto the plane of oscillations (typically
after a few oscillations), the measured short-time phase shifts
accurately determine the adjoint eigenvector. In this procedure
it is necessary to use the same number of oscillations to measure
the phase shift for all perturbed species. The independence of
the phase response method from long time behavior gives the
experimenter considerable flexibility in choosing the number
of oscillations used to calculate phase responses, and by this
the signal-to-noise ratio.

TABLE 1: Turanyi and Furrow Model for the
Briggs-Rauscher Reaction as Used in the Simulations

reaction step rate coefficient

2H+ + I- + IO3
- f HOI + HIO2 1500

H+ + HIO2 + I- f 2HOI 5× 109

HOI + I- + H+ f I2 + H2O 1× 109

I2 + H2O f HOI + I- + H+ 3 × 10-3

HIO2 + IO3
- + H+ f 2IO2

• + H2O 5× 105

2IO2
• + H2O f HIO2 + IO3

- + H+ 3 × 107

IO2
• + Mn2+ + H2O f HIO2 + Mn(OH)2+ 229

I2 + MA f IMA + I- + H+ 8
HOI + H2O2 f I- + H+ + O2+ H2O 35

Figure 6. Plot of the simulated phase shifts, denoted by circles, and
the fitted equation, denoted by a solid line, for perturbations in I-.
Perturbations increased the concentration of I- in the reactor by 5×
10-9 M. The fitted equation is∆Θ ) -0.0030+ 0.047 cos(2.25+
2πθ).

TABLE 2: Components of the Adjoint Eigenvector for the
TF Model Determined from the Jacobian Matrix and from
Simulated Phase Shifts (r and ψ are defined in section IV.b)

TF model:
Jacobian matrix

TF model: phase
response simulation

r ψ (deg) r ψ (deg)

I- 1 128.9 1 128.9
I2 0.77 178.6 0.73 178.8
HOI 0.37 -150.7 0.35 -149.1
HIO2 2.38 -89.4 2.31 -87.2
Mn2+ 0.0024 -0.3 0.0025 1.7
H+ 0.00018 14.5 0.00016 17.2
IO2

• 1.26 -89.3 1.25 -88.9
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C. Comparison with Quenching Experiments.We present
a comparison of the argument and magnitude of the two
components of the adjoint eigenvector that we obtained through
experimental phase shift experiments, I- and Mn2+, with results
for quenching experiments and calculations on the TF model,
Table 3. We see that the argument of the component for Mn2+

leads that for I- by 3 rad ()172°) for experimental phase
resetting and by 4 rad ()229°) for both the TF model and
quenching experiments. This difference may be due in part to
the noisy PRCs of the phase shift experiments (see Figures 4
and 5). The comparison between the experiments and the TF
model is reversed for the relative magnitudes of the I- and Mn2+

components of the adjoint eigenvector. In this case, results for
phase shift experiments differ from the TF model by a factor
of 3; whereas, quenching experiments yield a result that differs
by over an order of magnitude.

V. Discussion and Conclusion

In this paper we have demonstrated for the first time how
experimental phase response experiments can be used to
determine components of the adjoint eigenvector (of the
Jacobian matrix of the linearized system). These components
are closely related to the kinetics of the system and place
restrictions on the mechanism and values of the rate constants.
We have determined two components, corresponding to I- and
Mn2+, for the Briggs-Rauscher oscillatory reaction and com-
pared these with experimental quenching results and with a
simplified model for the system.

Our main conclusion is the ease and accuracy of using phase
resetting experiments to determine the adjoint eigenvector. The
experimenter only needs to adjust the magnitude of perturbation
for each species so that a measurable phase shift is observed;
phase shifts from short time series are sufficient to determine
components of the adjoint eigenvector. In contrast, the quench-
ing method has exacting requirements: for each species the

experimenter needs to find the correct phase and magnitude of
a perturbation that quenches oscillations; this requires observa-
tion of long transients and numerous trials.

Based on limited data, we find reasonably good agreement
between our experimental results and a reduced model of the
Briggs-Rauscher reaction, the TF model (with rate constants
adjusted to give a Hopf bifurcation and oscillation frequency
that are close to those of the experiments). A comparison of
our results with those of Vukojevic et al.15 shows a large
discrepancy in the relative magnitudes of I- and Mn2+

components of the adjoint eigenvector; this difference needs
further experimental clarification.

We regard our work as an initial study of the use of phase
resetting methods in the elucidation of the kinetics of oscillating
chemical reactions. This technique shows promise for further
investigation of the Briggs-Rauscher reaction as well as in other
oscillatory systems, such as the Belousov-Zhabotinsky reaction.
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